AD-A180 949

PURDUE UNIV LAFAYETTE IN DEPT OF STATISTICS
ON (N-1)-WISE AND JOINT INDEPENDENCE AND NORMALITY OF N RANDOM --ETC(U)
SEP 80 W J BUENLER, K J MIESCKE
NOC-80-27

NL

END
MARK
T-81
Date
To T-81
Date
The state of the s

PURDUE UNIVERS

DEPARTMENT OF STATISTICS

DIVISION OF MATHEMATICAL SCIENCES

81 6 29 244

FILE COPY 昌

LEVELI

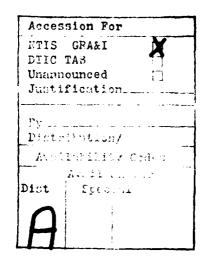
ON (n-1)-WISE AND JOINT INDEPENDENCE AND NORMALITY OF N RANDOM VARIABLES: AN EXAMPLE.

bу

Wolfgang J. Bunler and Klaus J./Miescke
Mainz University

Department of Statistics Division of Mathematical Sciences

Mimeograph Series 80-27


September 1980

APPROVED FOR PURLIC RELEASE DISTRIBUTION UNLINITED

*This research was supported by the Office of Naval Research under Contract NOCO14-75-C-0455 at Purdue University. Reproduction in whole or in part is permitted for any purpose of the United States Government.

ON (n-1)-WISE AND JOINT INDEPENDENCE AND NORMALITY OF n RANDOM VARIABLES: AN EXAMPLE

Wolfgang J. Bühler and Klaus J. Miescke
Mainz University

1

ABSTRACT

An example is given of a vector of n random variables such that any (n-1)-dimensional subvector consists of n-1 independent standard normal variables. The whole vector however is neither independent nor normal.

13

1. INTRODUCTION

When discussing stochastic independence in a course on probability theory, it is customary to give an example of three identically distributed random variables X, Y and Z which are pairwise independent but not mutually independent. As Driscoll (1978) has pointed out, the standard examples (Feller (1957); Gnedenko (1963); DeGroot (1975); Hogg and Craig (1970)) can be reduced to consideration of a random triple (X, Y, Z) which takes the values (0,0,0), (0,1,1), (1,0,1) and (1,1,0) each with probability one-fourth.

. Driscoll gave a more interesting example: \tilde{X} , \tilde{Y} independent each with the rectangular distribution on the unit interval and

 $\tilde{Z} = \tilde{X} + \tilde{Y} \mod 1$. This example also yielded a characterization of the rectangular distribution.

Our example shares with Driscoll's the fact of being more interesting than the standard ones and at the same time illustrates a point concerning the multi-dimensional normal distribution.

It is well known that the whole distribution of an n-dimensional normal vector (X_1,X_2,\ldots,X_n) is determined if the distribution of each pair (X_i,X_j) is known. In a different context one of the authors (KJM) raised the question whether (X_1,X_2,\ldots,X_n) is necessarily normal if all the pairs (X_i,X_j) are two-dimensional normal vectors. The following example shows that even joint normality of all (n-1)-tuples does not suffice.

2. THE EXAMPLE

Let $n \ge 3$ and let (Y_1, Y_2, \ldots, Y_n) be a random vector of signs, i.e. with components +1 or -1 such that any particular sign vector (y_1, y_2, \ldots, y_n) is taken with probability a if $\prod_{i=1}^n y_i = +1$ and with probability $b = 2^{-(n-1)} - a$ if $\prod_{i=1}^n y_i = -1$. Here $0 \le a \le 2^{-(n-1)}$.

<u>Proposition</u>: The random variables $Y_1, Y_2, ..., Y_n$ are (n-1)-wise independent. If $a \neq 2^{-n}$ they are not mutually independent.

<u>Proof:</u> Let $1 \le k \le n-1$. Any vector (y_1, y_2, \dots, y_i) can then be extended in 2^{n-k-1} ways to a vector (y_1, y_2, \dots, y_n) with $\prod_{i=1}^{n} y_i = +1$ and in as many ways to one for which the product of its components

is -1. Thus $P(Y_{i_1} = y_{i_1}, Y_{i_2} = y_{i_2}, \dots, Y_{i_k} = y_{i_k}) = 2^{n-k-1} a + 2^{n-k-1} b = 2^{-k}$ for all $k \le n-1$. This is the (n-1)-wise independence. However the relation $P(Y_{i_1} = +1, Y_{i_2} = +1, \dots, Y_{i_m} = +1) = a$ contradicts the total independence unless $a = 2^{-n}$.

Now let Z_1, Z_2, \ldots, Z_n be standard normal variables mutually independent and independent of the random vector (Y_1, Y_2, \ldots, Y_n)

and define $X_i = Y_i | Z_i |$, $i = 1, \ldots, n$. Then clearly the X_i are again standard normal. Also the independence of the Z_i together with the proposition imply that X_1, X_2, \ldots, X_n are (n-1)-wise independent. Thus any (n-1)-tuple out of X_1, X_2, \ldots, X_n is also (n-1)-dimensional normal. However $P(X_1 > 0, X_2 > 0, \ldots, X_n > 0) = P(Y_1 = Y_2 = \ldots = Y_n = +1) = a$ which, if $a \neq 2^{-n}$, contradicts the mutual independence of X_1, X_2, \ldots, X_n and thus also their joint normality, where mutual independence would be equivalent to all covariances being zero.

3. REMARKS

The example does in no way characterize the normal distribution. In fact we can replace the normal distribution of the Z_i by any other distribution symmetric around zero to obtain a similar example where all subvectors of (Z_1,\ldots,Z_n) except (Z_1,\ldots,Z_n) itself consist of mutually independent identically distributed random variables. With n=3 and a=0 the vector 2^{-1} (Y_1+1, Y_2+1, Y_3+1) is the random triple (X, Y, Z) mentioned in the introduction.

ACKNOWLEDGEMENT

This research was partly supported by the Office of Naval Research Contract N00014-75-C-0455 at Purdue University.

BIBLIOGRAPHY

- DeGroot, Morris H. (1975). Probability and Statistics. Addison-Wesley Publishing Co., Reading, Massachusetts.
- Driscoll, Michael F. (1978). On pairwise and mutual independence: Characterizations of rectangular distributions. Journal of the American Statistical Association, 73, 432-3.
- Feller, William (1957). Introduction to Probability Theory and Its Applications. 2nd ed., John Wiley & Sons, New York.
- Gnedenko, B. V. (1963). The Theory of Probability. 2nd ed., Chelsea Publishing Co., New York.
- Hogg, Robert V. and Craig, Allen T. (1970). Introduction to Mathematical Statistics. 3rd ed., The MacMillan Co., New York.

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	1	3. RECIPIENT'S CATALOG NUMBER
Mimeograph Seres #80- 27 -	AD-A100 94	
ON (n-1)-WISE AND JOINT INDEPENDENCE AND NORMALITY OF n RANDOM VARIABLES: AN EXAMPLE		5. TYPE OF REPORT & PERIOD COVERED
		Technical
		6. PERFORMING ORG. REPORT NUMBER Mimeo. Series #80-27
7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(s)
Wolfgang J. Bühler and Klaus J. Miescke		ONR NO0014-75-C-0455
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Purdue University Department of Statistics		
West Lafayette, IN 47907		over
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Office of Naval Research		September, 1980
Washington, DC		3
14. MONITORING AGENCY NAME & ADDRESS(II different	from Controlling Office)	15. SECURITY CLASS. (of this report)
•	!	Unclassified
		15a. DECLASSIFICATION DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release, distribution unlimited.		
17. DISTRIBUTION ST. IENT (of 11 - abetract entered in Block 20, it different from Report)		
18. SUPPLEMENTARY TES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
Independence; (n-1)-wise independence; joint normality.		
20		
An example is given of a vector of n random variables such that any (n-1)- dimensional subvector consists of n-1 independent standard normal variables. The whole vector however is neither independent nor normal.		
ł		

WHIS Information

r i

```
11 - TITLE
                   (U) MULTIPLE DECISION THEORY: ORDER STATISTICS AND RELATED
      PROBLEMS
    1 - AGENCY ACCESSION NO.
                               DH623558
    6 - SECURITY DF WORK.
                             UNCLASSIFIED
   12 - 5 + T AREAS.
                   009700 MATHEMATICS AND STATISTICS
                   011700 DPERATIONS RESEARCH
-- 21E - MILITARY/CIVILIAN APPLICATIONS
    2 - DATE OF SUMMARY: 08 JAN 81
   39 - PROCESSING DATE (RANGE).
                                     14 JAH
-- 10A1 - PRIMARY PROGRAM ELEMENT.
                                     61153H
-- 10A2 - PRIMARY PROJECT NUMBER .
                                     RR01405
                                                 RR01405
-- 10A2A - PRIMARY PROJECT AGENCY AND PROGRAM.
-- 10A3 - PRIMARY TASK AREA
                             RR0140501
-- 10A4 - WORK UNIT NUMBER
                               NR-042-243
--17A1 - CONTRACT/GRANT EFFECTIVE DATE:
--17A2 - CONTRACT/GRANT EXPIRATION DATE: JAN 84
-- 178 - CONTRACT/GRANT NUMBER: NOO014-75-8-0455
                       COST TYPE
-- 170 - CONTRACT TYPE:
--17D2 - CONTRACT/GRANT AMOUNT!
                                    $ 53,188
-- 17E - KIND OF AWARD: EXT
  17F - CONTRACT/GRANT CUMULATIVE DOLLAR TOTAL.
                                                   $ 757.197
-- 19A - DOD DRGANIZATION:
                               OFFICE OF MANAL RESEARCH (436)
  198 - DOD DRG. ADDRESS:
                              ARLINGTON, VA. 22217
  190 - RESPONSIBLE INDIVIDUAL:
                                    WEGMAN, E J
  19D - RESPONSIBLE INDIVIDUAL PHONE: 202-696-4315
-- 19U - DOD DRGANIZATION LOCATION CODE: 5110
-- 196 - DOD ORGANIZATION SORT CODE:
  19T - DOD DRGANIZATION CODE: 285250
                                    PURDUE UNIVERSITY DEPT OF STATISTICS
-- 20A - PERFORMING DRGANIZATION:
-- 200 - PERFORMING ORG. ADDRESS.
                                     LAFAYETTE, IN 47907
-- 200 - PRINCIPAL INVESTIGATOR.
                                     GUPTA, 5 5
  20D - PRINCIPAL INVESTIGATOR PHONE: 317-494-8622
  200 - PERFORMING ORGANIZATION LOCATION CODE: 1802
  20N - PERF. ORGANIZATION TYPE CODE: 0
  205 - PERFORMING DRG. SORT CODE.
                                   39418
                                          291730
  20T - PERFORMING ORGANIZATION CODE:
   22 - KEYWORDS: (U) TWO-STAGE PROCEDURES
                                                (U) MULTIPLE DECISION (U)
      RANKING AND SELECTION
                             (U) ORDER STATISTICS (U) RELIABILITY (
   37 - DESCRIPTORS:
                        (U) DECISION MAKING
                                               (U) *DECISION THEORY
                             (U) GOVERNMENT PROCUREMENT (U) *LOGISTICS
      DISTRIBUTION THEORY
      (U) *OPERATIONS RESEARCH
                                 /(U) PROBABILITY /(U) QUALITY CONTROL
      (U) RELIABILITY (U) SAMPLING
                                         /(U) STANDARDS
                                                          フ(U) STATISTICAL
      AMALYSIS
--宋末末末字末
```

DISTRIBUTION ON THE TOTAL